Interfacing Guide

Version 3.5

4 September, 2000

Interfacing Guide

The software described in this book is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

Copyright Notice

Micromass Ltd believes that the information in this publication is accurate. However the information is subject to change without notice and should not be construed as a contractual undertaking by Micromass Ltd. Despite the care which has been given to the preparation of this publication, Micromass Ltd accepts no responsibility for any loss or any other matter which may arise from any error or inaccuracy which may inadvertently have been included.

Copyright (C) 1993-2000 Micromass Ltd. All Rights Reserved.

No part of this publication may be copied without the express written permission of Micromass Ltd.

Trademarks

Micromass $\ \ \ \$ is a registered trade mark of Micromass Limited (Reg. U.S. Pat. & Tm. Off.).

Windows is a trademark of Microsoft Corporation. Other product names mentioned in this manual may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

Table of Contents

AutoLynx	60
•	
An Example Generic Sample List File	59
Sample List	56
File Formats	56
Bio-Rad File Descriptions	53
File Section Descriptions	47
Tabulated Sections	46
Fields	46
Sections	46
ProteinLynx Browser	46
File Section Descriptions	36
Free Format Text Sections	35
Tabulated Sections	35
Comments	34
Fields	34
Sections	34
MetaboLynx Browser	34
File Section Descriptions	25
Free Format Text Sections	24
Tabulated Sections	24
Comments	23
Fields	23
Sections	23
OpenLynx Browser	23
File Format	19
Comments	18
Fields	18
Sample Block	18
Plate Block	17
Batch Block	17
Paragraphs	16
OpenLynx Batch Files	16
Copying to and from the Windows NT Clipboard Export SEQUEST file	15 15
Export to LIMS File Copying to and from the Windows NT Clipboard	10 13
Exporting Export to LIMS File	10
Franchina	40
Notepad	9
Excel	9
Access 97	9
Creating Import Files	9
To Import Data	8
Import Data	8
Notepad	8
Excel	8
Access 97	7
Creating Import Files	7
To Import a Worksheet	6
Import Worksheet	<i>5</i>
Copying Data	5
Importing	5

Interfacing Guide

Index 69

Conventions

The Interfacing Guide follows these typographic conventions

This	Represents
bold	Anything you must type exactly as it appears
italic	Place holders for information you must provide. For example if you are asked to type <i>filename</i> , you would type the actual name for a file instead of the word shown in italic type.
ALL CAPITALS	Directory names, filenames and acronyms.

Keyboard Formats

Key combinations and key sequences appear in the following formats.

A plus sign (+) between key names means to press and hold down the first key while you press the second key. For example, "press ALT+ESC" means to press and hold down the ALT key and press the ESC key. Then release both keys.

KEY1,KEY2

A comma sign (,) between key names means to press and release the keys one after the other. For example, "press ALT,F" means to press and release the ALT key and then press the F key.

About This Manual

This manual is designed to explain how data can be imported into and exported from MassLynx for use in other applications. When you have read this manual you should be able to -

- Import data from Excel, Access and Notepad.
- Export quantify data to LIMS systems.
- Read ProteinLynx, OpenLynx and MetaboLynx report files.
- Read Chromatogram and Spectrum text files.

This manual assumes that you have no previous knowledge of MassLynx. However this manual does assume that you are familiar with using the Microsoft Windows NT Graphical Environment and have the basic skills required to work with Windows NT software.

If you have never used Microsoft Windows NT before we would suggest that you spend a short time reading "Chapter 2 Learning the Basics" in the Microsoft Windows NT Workstation Start Here guide supplied with your Windows NT software.

This manual also assumes knowledge of Access, Excel, Notepad and LIMS systems.

Importing

There are several ways of importing data into a Sample List:

- Copying and pasting data from text editors, Access and Excel.
- Import Worksheet.
- Import Data.

Copying Data

Data created in other Windows applications can be copied to the clipboard and pasted into the Sample List editor.

- 1. Press the button or select **New** from the **File** menu. If the previous Sample List has not been saved you will be prompted to save it. A Sample List with one default row will be displayed.
- 2. Add rows and columns to the Sample List so that it matches the number of rows and columns as the other Windows application. Note if this is not done data may be lost.
- 3. Select the relevant area in the other Windows application and copy it.
- 4. In the Sample List editor, position the cursor on the cell at the top left corner of the paste area and select Paste.

Notes:

If copying from a text editor e.g. Notepad fields must be tab delimited.

When copying from an Access database the last record is not pasted and will have to be entered manually.

Import Worksheet

Sample Lists can be created in a number of other packages and imported into MassLynx. MassLynx V3.0 and V3.1 allowed OpenLynx batch files and MassLynx V2.3 Sample List files to be imported. While these options are still supported, there are now several other file types that have been added.

- ACCESS 97
- Tab and Comma delimited text files
- Excel 97 and Excel 5.0, 6.0 and 7.0 files

To Import a Worksheet

1. Choose **Import Worksheet** from the MassLynx **File** menu.

Figure 1 The Import Worksheet dialog

2. Locate the required file, or type in a file name, and press **Open**. Generic Batch files created in OpenLynx are the default file types. Click on the arrow, at the end of the **Files of type** box, to import a different file type.

Creating Import Files

The following is a list of instructions on how to create files suitable for importing into MassLynx.

For all types of file fields must have the same name as in the Sample List (see Sample List on page 56) although they can be defined in any order. For Access 97 the data type must also match. The names correspond to the name in brackets on the **Customize Field Display** dialog.

Access 97

When the table is created it must be called **ANALYSIS**.

It is recommended that the design view is used when creating a new table, this allows you to define the data type of the field.

You must have the first column called **Index** as the primary key. Column headings must match those shown on page 56. Other columns can be present but they will not be imported into the Sample List.

To define the data type as a double

- 1. Select **Number** from the drop down list box in the **Data Type** column.
- 2. On the general page, at the bottom left of the screen, click on **Field Size** and select **Double** from the drop down list box.

■ To save in access 97 format

The table can be saved as an access database by selecting **Save** from the **File** menu and can be imported into MassLynx in this format. Tables can also be saved as tab or comma delimited files for importing into MassLynx.

■ To save in tab or comma delimited format

- Select Save As/Export from the File menu, select the To an External File or Database option and press OK.
- Select the required directory from the browser displayed, select
 Text files (*.txt;*.csv;*.tab;*.asc) from the Save as type drop down list box
 and then press the Export button.
- 3. Make sure the **Delimited** option is selected and press the **Next** button.
- 4. Check the **Include Field Names on First Row** option, select the type of delimiter to use and press the **Next** button.
- 5. Enter the name to save the file as and press the **Finish** button.

If files are saved as comma or tab delimited then they must be imported into MassLynx as comma or tab delimited files.

Excel

You must have the first column called **Index**, other column headings must match those shown on page 56.

Select the area containing the data to be imported, including the column headings, and name the area ANALYSIS. To do this select **Define** from the **Name** option on the **Insert** menu, type ANALYSIS and press **OK**.

Leave all cells in General format

For a text field containing only numeric data an apostrophe (') must be inserted in front of the number.

If the file is to be saved as tab or comma delimited then Excel will only allow one sheet to be saved. If the current workbook contains more than one worksheet then each worksheet must be saved as a separate text file.

Notepad

You must have the first column called **Index**, other column headings must match those shown on page 56.

Type in the field name/value and then a comma (or press tab for tab delimited files) and enter the next value. End each line with a carriage return.

Text fields should be enclosed in quotes.

Import Data

Sample List data can be created in a number of other packages and imported into MassLynx. The file types supported are:

- ACCESS 97
- Tab and Comma delimited text files
- Excel 97 and Excel 5.0, 6.0 and 7.0 files

To Import Data

- 1. In MassLynx ensure that the correct number of rows and columns is displayed. If this is not done then data will be lost.
- 2. Choose **Import Data** from the MassLynx **File** menu.
- 3. Locate the required file, or type in a file name, and press **Open**. Excel 5.0 files are the default file types. Click on the arrow, at the end of the **Files of type** box, to import a different file type.

Creating Import Files

The following is a list of instructions on how to create files suitable for importing into MassLynx.

For all types of file

- Fields must not have column headings.
- Fields must be in the same order as they are to appear in the MassLynx Sample List

Access 97

When the table is created it must be called **ANALYSIS**.

For Access 97 the data type of the column must match.

It is recommended that the design view is used when creating a new table, this allows you to define the data type of the field.

To define the data type as a double see Import Worksheet above.

To save in tab or comma delimited format follow the instructions for Import Worksheet above, except for step 4 where the **Include Field Names on First Row** option should not be checked.

If files are saved as comma or tab delimited then they must be imported into MassLynx as comma or tab delimited files.

Excel

Select the area containing the data to be imported, including the column headings, and name the area ANALYSIS. To do this select **Define** from the **Name** option on the **Insert** menu, type ANALYSIS and press **OK**.

Leave all cells in General format

For a text field containing only numeric data an apostrophe (') must be inserted in front of the number.

If the file is to be saved as tab or comma delimited then Excel will only allow one sheet to be saved. If the current workbook contains more than one worksheet then each worksheet must be saved as a separate text file.

Notepad

Type in the field name/value and then a comma (or press tab for tab delimited files) and enter the next value. End each line with a carriage return.

Text fields should be enclosed in quotes.

Exporting

There are several ways of exporting data from MassLynx:

- Export to LIMS.
- Copying Chromatogram and Spectrum peak lists.
- Export SEQUEST file.
- OpenLynx Batch files.
- OpenLynx Browser files.
- ProteinLynx Browser files.

Export to LIMS File

Quantification results can be written to a text file for use with LIMS systems. This can be performed automatically by selecting the Export Results to LIMS option on the Quantify Samples dialog. The results can also be exported from the Quantify window. Select **Export to LIMS File** from the **File** menu, select a file from the browser displayed or enter the name of a new one and press **Save**. If the selected file already exists, the user will be prompted to overwrite the existing file.

The file generated will consist of three areas; the Header Section , the Samples Section and the Calibration section.

The Header Section

The header section contains the following four sections. Each shows the full path name of the file generated by or used to create the report and the date and time that the file was last modified. All fields are text.

• LIMS EXPORT FILE The LIMS file generated

• SAMPLELIST The Sample List file.

• QUANMETHOD The quantification method file.

• QUANCALIBRATION The quantify curve file.

e.g. LIMS EXPORT FILE:

C:\Masslynx\lims1

Tue Nov 10 11:33:10 1998

Compound Section header fields

The compound section will include an entry for each sample in the current sample list. The header will contain the File Name, Sample ID and any text entered in the SPARE_1 to SPARE_5 fields in the sample list.

E.g. ASSAY01,ID,,,,,

Samples Section

For each sample there will be one entry for each compound named in the compound box in the quantify method. Each entry will have the following fields, separated by a comma. The data type column shows what type of field the data was exported from.

Field Description	Data Type
The compound number shown in the compound box in the quantification method.	int
The text name of this compound.	char
The scan at which the matching peak was found in the current sample datafile.	Int
The retention time of the matching peak.	Float
The relative retention time at which the matching peak was found.	Float
The area of the matching peak.	Float
The height of the matching peak.	Float
The response of the sample for this compound.	Float
The flags associated with the peak.	Text
The concentration of compound recorded for this sample.	Float
The blank subtracted concentration of the compound for this sample.	Float
The chromatogram trace used to locate peaks for this compound.	Char
The error between the expected concentration and the calculated concentration.	Float
The ordinal number of the compound in the quantification method that is used as the reference peak for this compound.	Int
The area of the reference peak used for this compound for this sample.	Float
The height of the reference peak	Float
The retention time of the reference peak.	float
The modification date of the peak used to quantify this compound for this sample. This refers manual modification of the peak.	Text
The modification time of the peak.	Text
The modification text (modification comment) of the peak.	Text
The MassLynx user who altered the peak.	Text
The mass of the peak.	Float
The retention time the peak was expected at for this compound.	Float

Field Description	Data Type
The relative retention time the peak was expected at for this compound.	Float
The user factor associated with this compound.	Float
The user RF factor associated with this compound.	Float
The start retention time of the detected peak	Float
The end retention time of the detected peak	Float

The Calibration Section

The calibration section will have a subsection for each calibration curve calculated for the current quantification calibration. Each subsection will contain information as displayed on the calibration graphs window. Where a line entry is inappropriate it will not be entered in the report file.

- Correlation coefficient: or Coefficient of Determination:
- Response Factor: or Calibration Curve:
- Response Type:
- Curve Type:, Origin:, and Weighting:

E.g.

Compound 1 name: I. Std

Response Factor: 846.154

Response type: External Std, Area

Curve type: RF

Compound 2 name: Parent

Coefficient of Determination: 1

Calibration curve: 0.568051 * x + 0.0010347

Response type: Internal Std (Ref 1), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound 3 name: Metabolite

Coefficient of Determination: 1

Calibration curve: 0.336996 * x + -0.00516146

Response type: Internal Std (Ref 1), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

All fields are text. It is possible to parse the correlation coefficients out, but their format will depend on how the quantify methods are set up, so this will have to be done on a per application basis.

Copying to and from the Windows NT Clipboard

The Windows NT Clipboard provides temporary storage for information that is being transferred between application programs (word processors, spreadsheets, MassLynx etc.). You can use the Clipboard to move data out of the Chromatogram and Spectrum windows as a text list. This data can then be pasted into reports written with a Windows compatible word processor.

■ To copy a chromatogram as a text list to the Clipboard

- 1. Display the required time range in a chromatogram window.
- 2. Press the Toolbar button or choose **Copy Chromatogram List** from the **Chromatogram Edit** menu. The section of the chromatogram on display will be transferred to the Clipboard as (time, intensity) pairs or (scan, intensity) pairs depending on the horizontal axis setting.
- 3. To read the information into another application, choose **Paste** from the other application's **Edit** menu.

Copying the Chromatogram list to the clipboard gives the following format.

Retention Time or Scan Number	Intensity
Retention Time or Scan Number	Intensity
Retention Time or Scan Number	Intensity
Retention Time or Scan Number	Intensity

The retention time or scan/intensity pairs are separated by a tab.

■ To copy integrated chromatogram peaks as a text list to the Clipboard

- 1. Display the required time range in a chromatogram window
- 2. Press the Toolbar button or choose **Copy Detected Peaks** from the **Chromatogram Edit** menu. The chromatogram peaks on display will be transferred to the Clipboard. The information transferred for each peak is the peak top, height, area, start, end, start height and end height.
- 3. To read the information into another application, choose **Paste** from the other application's **Edit** menu.

Copying the Chromatogram list to the clipboard gives the following format.

Retention Time	Peak Height	Peak Area	Peak Start RT	Peak End RT	Peak Start Intensity	Peak End Intensity
Retention Time		Peak Area	Peak Start RT	Peak End RT	Peak Start Intensity	Peak End Intensity

The fields are separated by a tab.

■ To copy a spectrum as a text list to the Clipboard

- 1. Display the required mass range in a Spectrum window.
- 2. Press the Toolbar button or choose **Copy Spectrum List** from the **Spectrum Edit** menu. The section of the spectrum on display will be transferred to the Clipboard as (mass, intensity) pairs.
- 3. To read the information into another application, choose **Paste** from the other application's **Edit** menu.

Copying the Spectrum list to the clipboard gives the following format.

Mass Intensity
Mass Intensity
Mass Intensity
Mass Intensity

The mass/intensity pairs are separated by a tab.

Export SEQUEST file

MassLynx has a facility to convert files into a format which can be used by the "SEQUEST" program. The "SEQUEST" program correlates uninterpreted tandem mass spectra of peptides with amino acid sequences from protein and nucleotide databases. It is written by Jimmy Eng and John Yates (University of Washington). Further details can be obtained via the Internet at http://thompson.mbt.washington.edu/sequest.

■ To Export a SEQUEST file

 Display the relevant centered MS/MS data file select Export SEQUEST file from the File menu.

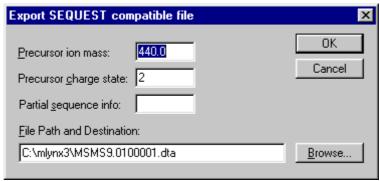


Figure 2 Export SEQUEST dialog

- 2. The **Precursor ion mass** is picked up from the data file, if it was entered in the Function Editor, otherwise type in a value.
- 3. The **Precursor charge state** defaults to 2, change this as required.
- 4. Enter any known sequence information in the **Partial sequence info** box.
- 5. File Path and Destination is the location and filename that the file will be saved to. The file name is the original file name with the scan and function numbers appended to it. To change the destination press the Browse button and select a new destination from the dialog displayed, or type a new one in.
- 6. Press the **OK** button.

Note: this option is only enabled if BioLynx is installed.

The file produced is an ASCII text file with the following format.

Precursor mass Charge

Mass Intensity

Mass Intensity

Mass Intensity

Mass Intensity

The mass/intensity pairs are separated by a space.

OpenLynx Batch Files

OpenLynx Batch files (*.olb) are produced when samples are submitted from the OpenLynx Login program. When created they are stored in the Masslynx\Openlynx\BatchDB folder. When they have been acquired and processed they are moved to the Masslynx\Openlynx\BatchDB\Processed folder.

Paragraphs

The file will hold section blocks of data called paragraphs. A file will have a "Batch" paragraph and at least one "Plate" paragraph, followed by a paragraph for each sample to be analysed. Where there is more than one plate in an analysis, there will be a paragraph for each plate followed by sample paragraphs for each sample.

A paragraph will always start with the name of the section surrounded by square parentheses on a line by itself. i.e. [SectionName].

```
e.g. [SectionName1]
....Data Item 1...
....Data Item 2...
[SectionName2]
....Data Item 1...
....Data Item 2...
```

A typical multi-plate analysis file would be arranged as follows

```
[Batch]
         ....Data Item 1...
         ....Data Item 2...
[Plate:1]
         ....Data Item 1...
         ....Data Item 2...
[Sample:1.1]
         ....Data Item 1...
         ....Data Item 2...
[Sample:1.n]
         ....Data Item 1...
         ....Data Item 2...
[Plate:2]
         ....Data Item 1...
         ....Data Item 2...
[Sample:2.1]
         ....Data Item 1...
         ....Data Item 2...
[Sample:2.n]
         ....Data Item 1...
         ....Data Item 2...
[Plate:m]
         ....Data Item 1...
         ....Data Item 2...
```

```
[Sample:m.1]
....Data Item 1...
....Data Item 2...
[Sample:m.n]
....Data Item 1...
....Data Item 2...
```

Batch Block

The first paragraph in the file will contain information that is pertinent to the whole batch.

MSMethod

MSTune

LCMethod

EconomyScheduling

PriorityScheduling

AnalysisTime

ProcessParameters

Process

UserName

BatchID

UserAddress

SampleReportEnable

NumberOfPlates

Plate Block

A file will contain a plate block for each plate which will contain information that is pertinent to the whole plate rather than a specific well. Within this plate block will be information concerning the plate description, plate ID and wells used. Where samples are not being presented in a plate this block can be used to describe the batch of samples loaded into an autosampler carousel.

JobCode

UserName

Rows

Columns

Track

NumberOfWells

Sample Block

For each sample to be analysed there will be a sample block that contains well position, and other information, specific to a certain sample.

Well

SampleDescription

Conditions

SampleID

MSDataName

SampleType

MSInjectionVolume

NumberOfMasses

Mass1

NumberOfFractions

NumberOfWaveLengths

NumberOfConcs

NumberOfFormulae

NumberOfFactors

NumberOfUserFields

Fields

Sections will have a group of fields, each field will be on one line. The field name will be the first item on the line, followed by "=" and then the data item for that field. The type of data will depend on the field type.

i.e. [SectionName]

FieldName1=Data1

FieldName2 = Data2

...

e.g. [Plate:3]

JobCode=JB123456 NumberOfWells=96

Comments

A comment line is denoted by the first character being a semi-colon. A comment line can be any where in a section. Multiple line comments must have a semi-colon preceding each line.

File Format

[Batch]

When creating files manually the fields marked an (M) must be defined, all other fields are optional.

Field/Section Name	Data Type	Description
NumberOfPlates (M)	Integer	Number of plates in analysis.
LabName	Text	Laboratory name.
MSMethod	Text	The name of the MS method to be used.
MSTune	Text	The name of the MS Tune file to be used. If not specified the current instrument tuning parameters will be used.
LCMethod	Text	The name of the acquisition Inlet method to be used.
InletPreRunMethod	Text	The name of the acquisition Inlet prerun method to be used. If not specified no prerun is performed.
InletPostRunMethod	Text	The name of the acquisition Inlet postrun method to be used. If not specified no postrun is performed.
InletSwitchMethod	Text	The name of the acquisition Inlet column switch method to be used. If not specified no switch method is performed.
Process	Text	Path of External Program to be executed for sample processing. Directory is not necessary if file exists in current directory.
ProcessParameters	Text	Path of Parameter File to be used by External Program.
EconomyScheduling	Integer	None zero if batch is to be run as a Night-Time task. Otherwise will be scheduled normally.
PriorityScheduling	Integer	None zero if batch is to be run as a Priority task. Otherwise will be scheduled normally.
AnalysisTime	Float	Time of analysis for each sample in the batch. Equals zero if no time is specified.
BatchID	Text	Name of batch.
UserName	Text	Name of user submitting batch.
UserAddress	Text	E-mail address to send batch results to.
ReportScheme	Text	Name of the OpenLynx Browser report scheme to use when formatting output results.
SampleReportEnable	Boolean	Indicates if per sample printing is required. $0 = \text{False}$, $1 = \text{True}$
HPLCMethod	Text	Path of HPLC method parameter override file if one exists.

[Plate:N]

Where $N = Plate\ Number$

Field/Section Name	Data Type	Description
PlateID	Text	Plate Identifier. A text description of the plate can be defined in files created externally. This is not generated in files created from the OpenLynx Login program.
PlatePosition	Text	The description of the plate position, as co-ordinates for plate position in the autosampler bed. 1. X,Y. 2. Not used for a linear autosampler e.g. HP GC type. Where X and Y are integers.
Origin	Text	The description of the start well position, as a pair of co-ordinates for well position in plate, or an absolute position WellAwellX(or wellXwellA) e.g. A1 Where X is an integer and A is an alphabetical character. Or TL=Top Left, TR=Top Right, BL=Bottom Left, BR=Bottom Right
JobCode	Text	Job or Batch Identifier.
UserName	Text	Name of operator performing analysis.
Rows (M)	Integer	Number of rows on plate
Columns (M)	Integer	Number of columns on plate
Track (M)	Text	R=Rows, C=Columns, RS=Rows Snake, CS=Columns Snake
NumberOfWells (M)	Integer	Number of wells used in plate or vials in an autosampler tray

[Sample:N:M]

Where N = Plate Number, M = Well Number

Field/Section Name	Data Type	Description
Well (M)	Text	The description of the well position, as co-ordinates for well position in plate, or an absolute position. There are two formats for a Well. This field can be used to identify a vial position in a non XY autosampler.
		1. wellAwellY (or wellYwellA) e.g. B6, 6B or 2,6.
		2. Absolute rack position. e.g. 18
		Where X and Y are integers and A is an alphabetical character.
SampleType	Integer	Sample type
		0 = Unknown, 1 = Standard, 2 = QC and 3 = Blank.
NumberOfMasses	Integer	The number of masses defined.
Mass1	Float	1 st mass to be used for targeting. This could be the mono- isotopic mass or the mass with the greatest intensity, derived from the formula's isotope cluster. If the analysis being performed by the MS requires an expected molecular weight then this field is Mandatory unless a formula is supplied.
Mass2	Float	2 nd Mass.
MassN	Float	N th Mass.
NumberOfFraction Triggers	Integer	The number of fractions defined. Only one fraction mass is currently supported by MassLynx.
Fraction1	Float	1 St Mass to be monitored by Fraction Collection system.
Fraction2	Float	Second Fraction Mass. Not currently used.
FractionN	Float	N th Fraction Mass
NumberOfFormulae	Integer	The number of formulae defined.
Formula1	Text	The 1 st chemical composition, if used.
Formula2	Text	The 2 nd chemical composition
FormulaN	Text	The N th chemical composition
NumberOfWavelengths	Integer	The number of wavelengths defined.
Wavelength1	Text	The 1 st wavelength, if used.
Wavelength2	Text	The 2 nd wavelength

Field/Section Name	Data Type	Description
WavelengthN	Text	The N th wavelength
NumberOfConcs	Integer	The number of concentrations defined.
Conc1	Text	The 1 st concentration, if used.
Conc2	Text	The 2 nd concentration
ConcN	Text	The N th concentration
NumberOfFactors	Integer	The number of user factors defined.
Factor1	Float	1 St User Factor if required. MassLynx currently only supports 1 User Factor.
Factor2	Float	The 2 nd User Factor. Not currently used.
FactorN	Float	N th User Factor. Not currently used.
SampleID	Text	Sample Identifier
SampleDescription	Text	Sample Description
Conditions	Test	Sample conditions
MSDataName	Text	The name of the MS data file to be processed and/or created.
MSInjectionVolume	Float	The amount of sample to inject, for an MS analysis.
NumberOfUserFields	Integer	The number of user fields defined.
User1	Text	1 St User Field, if required.
User2	Text	The 2 nd User Field.
UserN	Text	N th User Field.

OpenLynx Browser

Sections

The file will hold section blocks of data. The start of a section block will always start with the name of the section surrounded by square parentheses on a line by itself. i.e. [SectionName].

The main body of the data will be enclosed by a pair of braces, the opening and closing braces will be the only characters on their respective lines.

Section blocks can have section blocks embedded in them, in some cases multiple instances of sections with the same name can be allowed, depending on the type of data.

Fields

Sections will have a group of fields, each field will be on one line. The field name will be the first item on the line, followed by a list of TAB separated data items for that field. The type of data will depend on the field type.

```
i.e. [SectionName]
{
    FieldName1 Data1
    FieldName2 Data2_1 Data2_2
    ...
}
```

Comments

A comment line is denoted by the first character being a semi-colon. A comment line can be any where in a section. Multiple line comments have a semi-colon preceding each line.

Tabulated Sections

Some sections can be considered to be a table, or list, of fields of the same type. Tabulated sections do not have any field names to describe the data but will normally have a comment line describing the names of the fields.

```
e.g. [TableSection]
{
;Field1 Field2
Data1_1 Data1_2
Data2_1 Data2_2
...
}
```

Free Format Text Sections

The information in these sections contains free format text which may stretch over several lines. A line will be terminated with a <carriage return>linefeed> pair.

File Section Descriptions

SAMPLE

Field/Section Name	Data Type	Description
Sample	Integer	The number of the sample in the batch.
Well	Text	The description of the well position, as a pair of co-ordinates for plate position in rack and well position in plate, or an absolute position. There are three formats for Well.
		1. plateX,plateY:wellX,wellY
		2. plateX,plateY:wellAwell1 (or well1wellA)
		3. Absolute rack position.
		Where X and Y are integers and A is an alphabetical character.
FileName	Text	The MassLynx NT MS data file name.
SampleType	Integer	Sample type: Unknown = 0 , Standard = 1 , QC = 2 or Blank = 3 .
SampleID	Text	MassLynx Sample List input field.
SampleDescription	Text	MassLynx Sample List input field.
Date	Text	Date that MS data file was acquired.
Time	Text	Time that MS data file was acquired.
JobCode	Text	MassLynx Sample List input field.
TaskCode	Text	MassLynx Sample List input field.
UserName	Text	Current MassLynx user name.
LabName	Text	Laboratory name.
Instrument	Text	Instrument name.
Conditions	Text	MassLynx Sample List input field.
Submitter	Text	MassLynx Sample List input field.
Plate	Text	Description of micro-titre plate, if applicable. See below for detailed description.
INLET PARAMETERS	Section	Description of compound for testing.
COMPOUND	Section	Description of compound for testing.
FRACTION	Section	Results of any FractionLynx fraction collection.
FUNCTION	Section	MS function data and test results. There will be one FUNCTION section per MassLynx MS and DAD data functions.
ANALOG	Section	Analogue chromatographic data.

PLATE FIELD

For samples acquired using a Gilson or Waters 2700 autosampler the following information will be written to the file, otherwise this field will be blank.

Version Number (two digits)

Origin Location (TL - top left, TR - top right, BL - bottom left, BR - bottom right)

Priority (XY - x coordinate before y coordinate, YX - y coordinate before x coordinate)

Reference scheme (LN - letter number, NL - number letter, NN - number number, LL - letter letter, SC - sequential continuous, SD sequential discontinuous)

- 1:Number Of Rows
- 2: Number Of Columns
- 3:Row Spacing
- 4:Column Spacing
- 5:Row Offset
- 6:Column Offset
- 7:Which Rows Offset (O or E)
- 8:Which Columns Offset (O or E)
- 9:Plate Width
- 10:Plate Height
- 11:Vial/Well Depth
- 12:Vial/Well Diameter
- 13:Vial One X
- 14: Vial One Y

Note that all spacings, etc are given to 0.1 of a mm.

e.g.

01,TL,XY,LN,1:8,2:12,3:120.0,4:120.0,5:0.0,6:0.0,7:O,8:O,9:1250.0,10:870.0,11:4 00.0,12:90.0,13:80.0,14:130.0

Which means:

Version = 01.

Origin Location = top left.

Priority = x coordinate before y coordinate.

Reference scheme = Letter Number.

1:Number Of Rows = 8.

2:Number Of Columns = 12.

3:Row Spacing = 12mm.

4:Column Spacing = 12mm.

5:Row Offset = 0.0mm.

6:Column Offset = 0.0mm.

7:Which Rows Offset (O or E) = Odd numbers, but because Row Offset = 0, this has no effect .

8:Which Columns Offset (O or E) = Odd numbers, but because Column Offset = 0, this has no effect.

9:Plate Width = 125mm.

10:Plate Height = 87mm.

11:Vial/Well Depth = 40mm.

12:Vial/Well Diameter = 9mm.

13: Vial One X = 8.0mm.

14: Vial One Y = 13.0mm.

COMPOUND

Field Name	Data Type	Description
Mono Mass	Float	The mass used for targeting. This could be the mono-isotopic mass or the mass with the greatest intensity, derived from the formula's isotope cluster.
Formula	Text	The chemical composition, if entered.
Name	Text	The name of the compound. Unused at present.

FRACTION

Field Name	Data Type	Description
Mass	Float	The mass collected.
Org. Target	Float	The original mass minus any adducts.
Ion Mode	Text	The ionisation mode used to collect the fraction.
Start Time	Float	The time at which the fraction collection started.
End Time	Float	The time at which the fraction collection ended.
Start Site	Text	The name of the site at which the fraction collection started.
No. Of Tubes	Integer	The number of tubes the fraction was collected in.

INLET PARAMETERS

This is a free format text section.

FUNCTION

Field/Section Name	Data Type	Description
Function	Integer	The MassLynx MS data function number.
IonMode	Text	The type of ionisation mode e.g. AP+.
Туре	Text	The type of MS scan function e.g. MS for full scan.
Description	Text	A brief description of the MS scan function.
SPECTRUM	Section	MS data and results of testing. There can be more than one SPECTRUM section in a function.
CHROMATOGRAM	Section	Chromatographic data. There can be more than one CHROMATOGRAM section in a function.

SPECTRUM

Field/Section Name	Data Type	Description
ProcDesc	Text	Description of processing performed on spectrum. E.g. Combine (54:56-(38:39+74:75))
Process	Integer	The number of the MassLynx saved mass spectrum. Only present if the processed spectrum was saved with data file.
State	Text	The result of testing the quality of the mass spectral data.
Peak ID	Integer	Spectrum Peak Identification number.
Peak Ref	Integer	Peak Reference Number.
Time	Float	The retention time of the mass spectrum.
TIC	Float	Total Ion Current, the sum of all the peak intensities in the spectrum.
BPI	Float	The intensity of the base peak in the mass spectrum.
BPM	Float	The mass of the base peak in the mass spectrum.
Continuum	Text	TRUE if the spectrum is stored in continuum format. Otherwise FALSE.
Saved	Text	TRUE if the processed spectrum was saved with the data file. Otherwise FALSE.
MASSES	Section	Section describing the results of testing, and finding significant masses. This includes all adducts.
RESULTS	Section	Section describing the results of the targeting of the expected compound. Masses from the same compound are combined into one item.
MS	Section	Section that holds all the mass/intensity pairs, for this mass spectrum.
SEARCH	Section	Section holding the results of a library search on this spectrum. This section will not be created if no search exists.

MASSES

Field Name	Data Type	Description
Mass	Float	The input mass.
Exp. Mass	Float	The expected mass due to adduction.
Obs. Mass	Float	The mass that was actually observed.
% BPI	Float	The intensity of the mass peak as a percentage of the base peak intensity.
Int. Abs	Float	The absolute intensity of the MS peak.

RESULTS

Field Name	Data Type	Description
Mass	Float	The input mass.
Found	Boolean	1 if any of the possible adduct ions have been found for this compound, otherwise 0
% BPI	Float	The sum of the percentage intensities for the compound.
% Purity	Float	A measure of the contribution of this compound to the spectrum as percentage of the TIC. This includes all MS peaks associated with this compound.
Confirmed	Boolean	False if any of the confirmation tests made failed. If not specified regarded as being True.
Status	Text	Description of confirmation failure. Not present if confirmed = TRUE

MS

Field Name	Data Type	Description
Mass	Float	Observed mass of peak.
% BPI	Float	Intensity of peak as a percentage of the base peak.

ELEMENTAL

Contains results of elemental calculations if defined, otherwise this section does not appear.

Field Name	Data Type	Description
Mass	Float	Actual observed mass for which elemental composition was searched.
Calc. Mass	Float	Calculated mass of reported formula
mDa	Float	Difference between observed mass and calculated mass in milli-daltons
PPM	Float	Difference between observed mass and calculated mass in parts per million
DBE	Float	Double Bond Equivalence.
Formula	Text	Representation of calculated chemical formula. E.g. C19 H14 O2

SEARCH

Contains Spectrum library search results if library search was defined, otherwise this section does not appear.

Field Name	Data Type	Description
Library	Text	Name of library in which the search was made.
HIT	Section	Contains information about a library hit. There can be several or no hits for each search

HIT

Field Name	Data Type	Description
Entry	Integer	Library entry number hit was made against.
For	Integer	Forward search match value. Value between 0 and 1000.
Rev	Integer	Reverse search match value. Value between 0 and 1000.
Name	Text	Library entry name
F1	Float	Library entry general purpose filter 1 value.
F2	Float	Library entry general purpose filter 2 value.
Mass	Float	Library entry mass value.

CHROMATOGRAM

Field/Section Name	Data Type	Description
TraceNumber	Integer	Number of chromatogram trace.
Description	Text	The description of the chromatogram type.
ProcDesc	Text	Description of processing performed on chromatogram. E.g. Smooth (Mn, 2x2)
MaxIntensity	Float	The absolute intensity of the point with maximum intensity in the chromatographic data.
TRACE	Section	A section that holds the chromatographic data.
PEAK	Section	Section(s) that hold information about peak(s) detected in the chromatogram.

TRACE

Field Name	Data Type	Description
Time	Float	The time of the chromatographic point.
Int. %Max	Float	Intensity of the chromatographic point as a percentage of the maximum intensity.

PEAK

Field Name	Data Type	Description
Peak ID	Integer	Peak Identification number.
Peak Ref	Integer	Peak Reference Number.
Time	Float	Peak retention time in decimal minutes.
Peak	Float + Float	Peak start and end retention times in decimal minutes. Two floats separated by a TAB character.
Intensity	Float + Float	Peak baseline start and end intensity. Two floats separated by a TAB character.
Height	Float	Detected peak height.
AreaAbs	Float	Detected peak area.
Area %BP	Float	Detected peak area as percentage of the largest peak in the chromatogram.
Area %Total	Float	Detected peak area as percentage of the sum of all the peak areas in the chromatogram.
Width	Float	Peak width in decimal minutes.
RT Index	Float	Retention time index for peak. Field only output if RT Index has been calculated.
RT LogP	Float	Retention time LogP for peak. Field only output if RT LogP has been calculated.
Calc Conc	Float	Calculated concentration for peak. Field only output if calculated.
Calc Amount	Float	Calculated amount for peak. Field only output if calculated.

ANALOG

Field/Section Name	Data Type	Description
Number	Integer	The number of the MassLynx analog channel.
Description	Text	The description of the analog data source.
MaxIntensity	Float	The absolute intensity of the point with maximum intensity in the analog channel data.
TRACE	Section	A section that holds the chromatographic data. See description above.
PEAK	Section	Section(s) that hold information about peak(s) detected in the chromatogram. See description above.

MetaboLynx Browser

Sections

The file will hold section blocks of data. The start of a section block will always start with the name of the section surrounded by square parentheses on a line by itself. i.e. [SectionName].

The main body of the data will be enclosed by a pair of braces, the opening and closing braces will be the only characters on their respective lines.

Section blocks can have section blocks embedded in them, in some cases multiple instances of sections with the same name can be allowed, depending on the type of data.

Fields

Sections will have a group of fields, each field will be on one line. The field name will be the first item on the line, followed by a list of TAB separated data items for that field. The type of data will depend on the field type.

Comments

A comment line is denoted by the first character being a semi-colon. A comment line can be any where in a section. Multiple line comments have a semi-colon preceding each line.

Tabulated Sections

Some sections can be considered to be a table, or list, of fields of the same type. Tabulated sections do not have any field names to describe the data but will normally have a comment line describing the names of the fields.

```
e.g. [TableSection]
{
;Field1 Field2
Data1_1Data1_2
Data2_1Data2_2
...
}
```

Free Format Text Sections

The information in these sections contains free format text which may stretch over several lines. A line will be terminated with a <carriage return>linefeed> pair.

File Section Descriptions

SAMPLE

Field/Section Name	Data Type	Description
Sample	Integer	The number of the sample in the batch.
ProcessParameters	Text	MassLynx Sample List input field. Name of the MEP file used to process the data.
InjectionVolume	Float	MassLynx Sample List input field. Volume of sample injected, in micro-litres.
InletFileName	Text	MassLynx Sample List input field. Name of the Inlet Parameters file used to acquire the data.
MSMethodFileName	Text	MassLynx Sample List input field. Name of the Method File used to acquire the data.
MSTuneFileName	Text	MassLynx Sample List input field. Name of the Instrument Tune File used for the data acquisition.
Well	Text	The description of the well position, as a pair of co-ordinates for plate position in rack and well position in plate, or an absolute position. There are three formats for Well.
		1. plateX,plateY:wellX,wellY
		2. plateX,plateY:wellAwell1 (or well1wellA)
		3. Absolute rack position.
		Where X and Y are integers and A is an alphabetical character.
FileName	Text	The MassLynx NT MS data file name.
SampleType	Text	QC = Control Sample, Analyte = metabolised sample.
SampleID	Text	MassLynx Sample List input field.
SampleDescription	Text	MassLynx Sample List input field.
Date	Text	Date that MS data file was acquired.
Time	Text	Time that MS data file was acquired.
JobCode	Text	MassLynx Sample List input field.
TaskCode	Text	MassLynx Sample List input field.
UserName	Text	Current MassLynx user name.
LabName	Text	Laboratory name.

Field/Section Name	Data Type	Description
Instrument	Text	Instrument name.
Conditions	Text	MassLynx Sample List input field.
Submitter	Text	MassLynx Sample List input field.
Plate	Text	Description of micro-titre plate, if applicable. See below for detailed description.
COMPOUND	Section	Description of parent drug(s); the masses taken from the MassLynx Sample List.
FUNCTION	Section	MS function data and test results. There will be one FUNCTION section per MassLynx MS and DAD data functions.
ANALOG	Section	Analogue chromatographic data.
EXPECTED METABOLITES	Section	Description of metabolites searched for.
UNEXPECTED METABOLITES	Section	Description of potential metabolites found as a result of comparing the sample with a control.

PLATE FIELD

For samples acquired using a Gilson or Waters 2700 autosampler the following information will be written to the file, otherwise this field will be blank.

Version Number (two digits)

Origin Location (TL - top left, TR - top right, BL - bottom left, BR - bottom right)

Priority (XY - x coordinate before y coordinate, YX - y coordinate before x coordinate)

Reference scheme (LN - letter number, NL - number letter, NN - number number, LL - letter letter, SC - sequential continuous, SD sequential discontinuous)

- 1:Number Of Rows
- 2:Number Of Columns
- 3:Row Spacing
- 4:Column Spacing
- 5:Row Offset
- 6:Column Offset
- 7:Which Rows Offset (O or E)
- 8:Which Columns Offset (O or E)
- 9:Plate Width
- 10:Plate Height

11:Vial/Well Depth

12:Vial/Well Diameter

13: Vial One X

14:Vial One Y

Note that all spacings, etc are given to 0.1 of a mm.

e.g.

01,TL,XY,LN,1:8,2:12,3:120.0,4:120.0,5:0.0,6:0.0,7:O,8:O,9:1250.0,10:870.0,11:4 00.0,12:90.0,13:80.0,14:130.0

Which means:

Version = 01.

Origin Location = top left.

Priority = x coordinate before y coordinate.

Reference scheme = Letter Number.

1:Number Of Rows = 8.

2:Number Of Columns = 12.

3:Row Spacing = 12mm.

4:Column Spacing = 12mm.

 $5:Row\ Offset = 0.0mm.$

6:Column Offset = 0.0mm.

7:Which Rows Offset (O or E) = Odd numbers, but because Row Offset = 0, this has no effect .

8:Which Columns Offset (O or E) = Odd numbers, but because Column Offset = 0, this has no effect.

9:Plate Width = 125mm.

10:Plate Height = 87mm.

11:Vial/Well Depth = 40mm.

12: Vial/Well Diameter = 9mm.

13: Vial One X = 8.0mm.

14: Vial One Y = 13.0mm.

COMPOUND

Field Name	Data Type	Description
Mono Mass	Float	The parent drug used for targeting. This could be the monoisotopic mass or the mass with the greatest intensity, derived from the formula's isotope cluster.
Formula	Text	The chemical composition, if entered.

FUNCTION

Field/Section Name	Data Type	Description
Function	Integer	The MassLynx MS data function number.
IonMode	Text	The type of ionisation mode e.g. AP+.
Туре	Text	The type of MS scan function e.g. MS for full scan.
Description	Text	A brief description of the MS scan function.
ScanCycleTime	Float	The scan cycle time in seconds i.e. the scan duration + the inter-scan delay time.
InterScanDelay	Float	The inter-scan delay in seconds.
SPECTRUM	Section	MS data and results of testing. There can be more than one SPECTRUM section in a function.
CHROMATOGRAM	Section	Chromatographic data. There can be more than one CHROMATOGRAM section in a function.

SPECTRUM

Field/Section Name	Data Type	Description
ProcDesc	Text	Description of processing performed on spectrum. E.g. Combine (54:56-(38:39+74:75))
Process	Integer	The number of the MassLynx saved mass spectrum. Only present if the processed spectrum was saved with data file.
State	Text	The result of testing the quality of the mass spectral data.
Peak ID	Integer	Spectrum Peak Identification number.
Peak Ref	Integer	Peak Reference Number.
Peak Cluster ID	Integer	If this peak is considered to be the same as another peak (according to Setup parameter Min Peak Separation) then this is the number of the cluster containing this and all other similar peaks. A value of -1 indicates that this peak is considered separate from all others.
Control Peak ID	Integer	If the sample is an analyte and this spectrum matches one in the control, then the Peak ID of the control spectrum is written to this field. Only present if this spectrum has a matching control spectrum.
Time	Float	The retention time of the mass spectrum.
TIC	Float	Total Ion Current, the sum of all the peak intensities in the spectrum.
BPI	Float	The intensity of the base peak in the mass spectrum.
BPM	Float	The mass of the base peak in the mass spectrum.
Continuum	Text	TRUE if the spectrum is stored in continuum format. Otherwise FALSE.
Saved	Text	TRUE if the processed spectrum was saved with the data file. Otherwise FALSE.
MASSES	Section	Section describing the results of testing, and finding significant masses. This includes all adducts.
RESULTS	Section	Section describing the results of the targeting of the expected compound. Masses from the same compound are combined into one item.
MS	Section	Section that holds all the mass/intensity pairs, for this mass spectrum.

MASSES

Field Name	Data Type	Description
Mass	Float	The input mass.
Exp. Mass	Float	The expected mass due to adduction.
Obs. Mass	Float	The mass that was actually observed.
% BPI	Float	The intensity of the mass peak as a percentage of the base peak intensity.
Int. Abs	Float	The absolute intensity of the MS peak.

RESULTS

Field Name	Data Type	Description
Mass	Float	The input mass.
Found	Boolean	1 if any of the possible adduct ions have been found for this compound, otherwise 0.
% BPI	Float	The sum of the percentage intensities for the compound.
% Purity	Float	A measure of the contribution of this compound to the spectrum as percentage of the TIC. This includes all MS peaks associated with this compound.
Confirmed	Boolean	False if any of the confirmation tests made failed. If not specified regarded as being True.
Status	Text	Description of confirmation failure. Not present if confirmed = TRUE

MS

Field Name	Data Type	Description
Mass	Float	Observed mass of peak.
% BPI	Float	Intensity of peak as a percentage of the base peak.

ELEMENTAL

Contains results of elemental calculations if defined, otherwise this section does not appear.

Field Name	Data Type	Description
Mass	Float	Actual observed mass for which elemental composition was searched.
Calc. Mass	Float	Calculated mass of reported formula
Mda	Float	Difference between observed mass and calculated mass in milli-daltons
PPM	Float	Difference between observed mass and calculated mass in parts per million
DBE	Float	Double Bond Equivalence.
Formula	Text	Representation of calculated chemical formula. E.g. C19 H14 O2

CHROMATOGRAM

Field/Section Name	Data Type	Description
TraceNumber	Integer	Number of chromatogram trace.
Description	Text	The description of the chromatogram type.
ProcDesc	Text	Description of processing performed on chromatogram. E.g. Smooth (Mn, 2x2)
MaxIntensity	Float	The absolute intensity of the point with maximum intensity in the chromatographic data.
TraceNumberIn Function	Integer	The number of the chromatogram trace relative to the start of the function.
TRACE	Section	A section that holds the chromatographic data.
PEAK	Section	Section(s) that hold information about peak(s) detected in the chromatogram.

TRACE

Field Name	Data Type	Description
Time	Float	The time of the chromatographic point.
Int. %Max	Float	Intensity of the chromatographic point as a percentage of the maximum intensity.

PEAK

Field Name	Data Type	Description
Peak ID	Integer	Peak Identification number.
Peak Ref	Integer	Peak Reference Number.
Peak Cluster ID	Integer	If this peak is considered to be the same as another peak (according to Setup parameter Min Peak Separation) then this is the number of the cluster containing this and all other similar peaks. A value of -1 indicates that this peak is considered separate from all others.
Time	Float	Peak retention time in decimal minutes.
Peak	Float + Float	Peak start and end retention times in decimal minutes. Two floats separated by a TAB character.
Intensity	Float + Float	Peak baseline start and end intensity. Two floats separated by a TAB character.
Height	Float	Detected peak height.
AreaAbs	Float	Detected peak area.
Area %BP	Float	The peak area as a percentage of the largest peak in the sample in which a metabolite was detected. If no metabolite found = 0.
Area %Total	Float	The peak area as a percentage of the total area of all peaks in the sample in which a metabolite was detected. If no metabolite found = 0.
Width	Float	Peak width in decimal minutes.

ANALOG

Field/Section Name	Data Type	Description	
Number	Integer	The number of the MassLynx analog channel.	
Description	Text	The description of the analog data source.	
MaxIntensity	Float	The absolute intensity of the point with maximum intensity in the analog channel data.	
TRACE	Section	A section that holds the chromatographic data. See above.	
PEAK	Section	Section(s) that hold information about peak(s) detected in the chromatogram. See above.	

EXPECTED METABOLITES

This is a tabulated section.

Field Name	Data Type	Description	
Compound	Float	The number of the compound that this metabolite is associated with, starting from zero.	
Precursor	Float	Mass to be searched for, the sum of the compound and metabolite.	
Metabolite	Float	Mass of the metabolite, as specified on the MetaboLynx Setup Metabolites page. It is the mass difference between the Compound Mass and the Precursor.	
Found	Boolean	1 indicates mass was found, 0 not found.	
Formula	Text	The formula of the metabolite if known. Absolute formula if the parent mass was specified as a formula (e.g. C18H24O2) or relative formula if parent mass was specified as a mass (e.g. +CO2). If the metabolite is not recognised the formula is 0.	
ChroTrace	Integer list	This field is a comma-separated list of chromatogram traces searched when looking for this mass; the trace numbers start from 1.	
Peak	Text list	If the mass was found, this field is a comma-separated list of chromatogram peak numbers in which the mass was found. Each peak is identified by a string of text containing four forward slash separated numbers in the following format: peak-number/function-number/trace-number/mass-found where the first 3 numbers are integers, the fourth a float. If the mass was not found, this field is 0.	
MetName	Text	Descriptive name of the metabolite	

UNEXPECTED METABOLITES

This is a tabulated section.

Field Name	Data Type	Description
Compound	Float	The number of the compound that this metabolite is associated with, starting from zero.
Precursor	Float	Mass to be searched for, the sum of the compound and metabolite.
Metabolite	Float	Mass of the metabolite, as specified on the MetaboLynx Setup Metabolites page. It is the mass difference between the Compound Mass and the Precursor.
Found	Boolean	1 indicates mass was found, 0 not found.
Formula	Text	The formula of the metabolite if known. Absolute formula if the parent mass was specified as a formula (e.g. C18H24O2) or relative formula if parent mass was specified as a mass (e.g. +CO2). If the metabolite is not recognised the formula is 0.
ChroTrace	Integer list	This field is a comma-separated list of chromatogram traces searched when looking for this mass; the trace numbers start from 1.
Peak	Text list	If the mass was found, this field is a comma-separated list of chromatogram peak numbers in which the mass was found. Each peak is identified by a string of text containing four forward slash separated numbers in the following format: peak-number/function-number/trace-number/mass-found where the first 3 numbers are integers, the fourth a float. If the mass was not found, this field is 0.
MetName	Text	Descriptive name of the metabolite

ProteinLynx Browser

Sections

The file will hold section blocks of data. The start of a section block will always start with the name of the section surrounded by square parentheses on a line by itself. i.e. [SectionName].

The main body of the data will be enclosed by a pair of braces, the opening and closing braces will be the only characters on their respective lines.

Section blocks can have section blocks embedded in them, in some cases multiple instances of sections with the same name can be allowed, depending on the type of data.

Fields

Sections will have a group of fields, each field will be on one line. The field name will be the first item on the line, followed by a list of TAB separated data items for that field. The type of data will depend on the field type.

```
i.e. [SectionName]
{
    FieldName1 Data1
    FieldName2 Data2_1Data2_2
    ...
}
```

Tabulated Sections

Some sections can be considered to be a table, or list, of fields of the same type. Tabulated sections do not require any field names to describe the data.

```
e.g. [TableSection]
{
;Field1 Field2
Data1_1Data1_2
Data2_1Data2_2
...
}
```

File Section Descriptions

SAMPLE

Note: The fields may not appear in the same order as the table below and some empty fields will not appear at all.

Field/Section Name	Data Type	Description
Sample	Integer	The number of the sample in the batch.
Well	Text	The description of the well position, as a pair of co-ordinates for plate position in rack and well position in plate, or an absolute position. There are three formats for Well.
		1. wellX,wellY
		2. wellAwell1 (or well1wellA)
		3. Absolute rack position.
		Where X and Y are integers and A is an alphabetical character.
Data_File_Name	Text	The MassLynx NT MS data file name.
Sample_ID	Text	MassLynx Sample ID.
Sample_Description	Text	MassLynx Sample description.
Spare1	Text	User definable spare.
Spare2	Text	User definable spare.
Spare3	Text	User definable spare.
Spare4	Text	User definable spare.
Spare5	Text	User definable spare.
Date	Text	Date that MS data file was acquired.
Time	Text	Time that MS data file was acquired.
Job_Code	Text	MassLynx Sample List Jobcode field.
Task_Code	Text	MassLynx Sample List Taskcode field.
User_Name	Text	Current MassLynx user name.
Instrument	Text	Instrument name.
Plate	Text	Description of micro-titre plate, if applicable.
MS_File	Text	The MassLynx MS data file name.
Process_Parameters	Text	The MassLynx process parameter file name.

Field/Section Name	Data Type	Description
FUNCTION	Section	MS function data and results. There will be one FUNCTION section per MassLynx MS data functions.

FUNCTION

Field/Section Name	Data Type	Description
Function	Integer	The MassLynx MS data function number.
IonMode	Text	The type of ionisation mode e.g. AP+.
Туре	Text	The type of MS scan function e.g. MS for full scan.
Description	Text	A brief description of the MS scan function.
PROCESS_PARAMETERS	Section	MS process parameter data and results. There will only be one PROCESS_PARAMETERS section in a FUNCTION.
SEARCH_PARAMETERS	Section	MS search parameter data. There will only be one SEARCH_PARAMETERS section in a FUNCTION.
SEARCH_RESULTS	Section	MS search results. There will only be one SEARCH_RESULTS section in a FUNCTION.
SPECTRUM	Section	MS raw spectrum data. There will only be one SPECTRUM in a function. Note : Only present for Maldi data.
PEAKLIST	Section	MSMS raw spectrum data. There will only be one PEAKLIST in a function. Note : Only present for MSMS data.

PROCESS_PARAMETERS

Field Name	Data Type	Description
Do_Process	Boolean	1 if processing has been performed, otherwise 0.
Combine_Mode	Text	Spectrum combine mode.
DoBackgroundSubtract	Boolean	1 if background subtraction has been performed, otherwise 0.
PolynomialOrder	Int	Number indicating the polynomial order used in background subtraction.
BelowCurve	Int	Number indicating the below curve % used in background subtraction.
DoSmooth	Boolean	1 if smoothing has been performed, otherwise 0.
SmoothChannels	Float	Number of channels smoothed.
NumberOfSmooths	Int	Number of smooths performed.
Smooth_Mode	Text	The smoothing method used. E.g. Savitzky-Golay
Min_Peak_Width	Int	Minimum spectral peak width.
Centroid_Percent	Float	Intensity of peak as a percentage of the base peak.
Centroid_Mode	Text	Spectrum centroid mode used.
PreCharge	Int	Pre charge state.
Min_Mass_To_Start	Float	Minimum start search mass.
Isotope_Factor	Float	Minimum isotopic factor value.
Relative_Deiso_Intensity	Int	The relative deiso intensity.
LockMassPeak_1	Int	First lock mass value.
LockMassPeak_2	Int	Second lock mass value
LockMassPeak_3	Int	Third lock mass value.

SEARCH_PARAMETERS

Field Name	Data Type	Description
Do_Search	Boolean	1 if search performed, otherwise 0.
Database_Type	Text	Type of database searched.
Index_Path	Text	Path of database index.
Sequence_File	Text	Database sequence file name.
Trembl_Path	Text	Path of Trembl database
SearchServer	Text	Name of search server
Output_Type	Text	Type of output file.
PEAKLIST_location	Text	Location of Sequest output file.
MASS	Text	Location of mascot output file.
PepSea_location	Text	Location of PepSea output file.
MOWSE_location	Text	Location of mass intensity output file.
Organism	Text	Search organism.
Freetext	Text	Search free text.
Keyword	Text	Search key word.
Author	Text	Search author.
Accession	Text	The database accession code.
Subsequence	Text	Search sub sequence.
BileEqual	Boolean	1 if treat I/L and Q/K as equivalent box checked, otherwise 0
Do_Monoiso	Boolean	1 if search monoisotopic peaks box checked, otherwise 0.
MAX_HITS	Integer	Maximum number of hits to return from the search. 0 if All selected.
SORT_TYPE	Text	BIO_SORT_PROB, BIO_SORT_LIKELIHOOD, BIO_SORT_ENTRY, BIO_SORT_COVERAGE or BIO_SORT_MATCH depending on the sort method.
Exclude_Lockmass	Boolean	1 if lockmass excluded, otherwise 0.
Tolerance	Float	Peptide tolerance value.
Tolerance_Units	Text	Peptide tolerance units.

Field Name	Data Type	Description
Charge	Float	Peptide charge state.
MinToMatch	Int	Number of required matches.
Do_Digest	Boolean	1 if digest simulation was performed, otherwise 0.
Fast_Digest_Reagent	Text	Name of digest reagent when using and index.
Digest_Index	Text	Digest index's file path and name.
Simulated_Digest_Reagent	Text	Name of primary digest reagent.
Secondary_Digest_Reagent	Text	Name of secondary digest reagent.
pFactor	Float	The pFactor value entered.
Missed_cleavages	Integer	Number of missed cleavage sites.
Do_Incomplete	Boolean	1 if incomplete cleavage processing performed, otherwise 0.
Do_MW	Boolean	1 if molecular weight restriction was specified, otherwise 0.
MW_from	Float	Molecular weight range minimum.
MW_to	Float	Molecular weight range maximum.
Do_PI	Boolean	1 if isoelectric point restriction was specified, otherwise 0.
PI_from	Float	Isoelectric point range minimum.
PI_to	Float	Isoelectric point range maximum.
Do_Modifiers	Boolean	1 if modification was specified, otherwise 0.
Reduced_cysteine	Boolean	1 if reduced cysteine was specified, otherwise 0.
MODIFIERS	Section	Description of the modifiers used during processing.

MODIFIERS

Field Name	Data Type	Description
Name of modifier	Boolean	1 if always use this modifier box checked, 0 if use when needed to match peptide box checked.

SEARCH_RESULTS

Field Name	Data Type	Description
File_Name	Text	Search result file name with its full path
PRP_File_Name	Text	The hit section does not appear in this file but in the file named above. One HIT section defines one database Hit. There can be more than one HIT sections.

SPECTRUM

Field/Section Name	Data Type	Description
LockMassUsed	Float	The lock mass value used
MONOISOMASSES	Section	MS monoisomasses data. There will only be one MONOISOMASSES in a SPECTRUM.
CORRECTION_FACTOR	Section	MS raw spectrum data. There will only be one CORRECTION_FACTOR in a SPECTRUM.

MONOISOMASSES

Field Name	Data Type	Description
	Float	One monoisomass value per line. There can be more than one line

CORRECTION_FACTOR

Field Name	Data Type	Description
Correction_Factor	Float	Correction factor applied to the whole spectrum. Calculated from the lock mass.
Offset_Factor	Float	Correction factor applied to the whole spectrum. Calculated from the lock mass.
ProcessHistory	Text	Process history information text string

PEAK_LIST

Field Name	Data Type	Description
Output_Filename	Text	The name of the Mascot or Sequest compatible peak information file.
		e.g.
		Mascot file
		C:\TEMP\hilo07.004.2.1.pkl
		where 004 = the scan number
		2 = the function number
		1 = the charge state
		Sequest file
		C:\MASSLYNX\hilo07.0100001.dta
		where 0001 = the scan number
		01 = the function number.

Bio-Rad File Descriptions

If the Bio-Rad box was checked then a SampleID.txt file is produced with the following format.

Field Name	Data Type	Description
VIEW_ONE	Section	Database protein entry information. There will only be one VIEW_ONE section per HIT.
VIEW_TWO	Section	Database match information There will only be one VIEW_TWO section per HIT.
VIEW_THREE	Section	Database protein sequence There will only be one VIEW_THREE section per HIT.

VIEW_ONE

Some entries do not contain data on all the line types, and some line types occur many times in a single entry.

Field Name	Description
ID	Identification line showing the entry name of the sequence.
AC	The accession number, a unique number used to identify entries.
DT	Date of entry or last modification.
DE	Description line containing general descriptive information.
GN	Gene name.
OS	The organism species line specifies the organism which was the source of the sequence. In most cases this is the Latin name followed by the English name (in parentheses). For viruses only the common English name is given. If the sequence is identical for more than one species the OS lines will list the names of all those species.
OG	The Organelle lines indicate if the gene coding for a protein originates from the mitochondria, the chloroplast, a cyanelle or a plasmid.
OC	The organism classification lines contain the taxonomic classification of the source organism.
RN	Reference number
RP	Reference position
RC	Reference comment
RX	Reference cross-reference
RA	Reference authors
RL	Reference location (Journal information)
CC	Comments or notes used to convey useful information.
DR	The database cross-reference lines are used as pointers to related information in other data collections. E.g. Protein Data Bank (PDB).
KW	Keyword lines provide information which can be used to generate cross-references to other entries.
FT	Feature table data lists regions of interest in the sequence - post-transitional modifications, binding sites, enzyme active sites etc.
SQ	Sequence header followed by sequence data .

VIEW_TWO

Some entries do not contain data on all the line types, and some line types occur many times in a single entry.

Field Name	Description
ID	Identification line showing the entry name of the sequence.
Accession number	The accession number, a unique number used to identify entries.
Description	Description line containing general descriptive information.
Species	The organism species line specifies the organism which was the source of the sequence.
Number of matched peptides	The number of matched peptides
Probability score	MOWSE type score.
Percent coverage	% sequence coverage.
Isoelectric point	The isoelectric point of the entry.
Molecular weight	The molecular weight of the entry.
Matching peptides	A list of matching fragment masses with their molecular weight (MW), mass error (Delta), the position of the peptide in the sequence (start and end) and the sequence. If a * appears to the left of one of these entries then it is a single partial fragment (i.e. one missed cleavage site), if ** appears it is a double partial fragment (i.e. two missed cleavage sites).
Unmatched masses	A list of unmatched masses showing the Searched mass, the Query mass and the Charge State.

VIEW_THREE

This view displays the sequence specific to the entry as a text string.

File Formats

Sample List

The Sample Lists are held in Microsoft Access which mean their contents are readily available to numerous other windows programs. Sample Lists created by the MassLynx system have the .SPL extension.

Label	Format	Description
VERSION	Double	Database version number.
Index	Double	Used internally to keep samples sequenced when editing.
FILE_NAME	Char (255)	Raw data file name for this sample. Can be name or full path.
MS_FILE	Char (255)	MS method parameter file to use when acquiring this sample. Can be name or full path.
MS_TUNE_FILE	Char (255)	MS tuning parameter file to use when acquiring this sample. Can be name or full path. If empty the current tune settings will be used.
INLET_FILE	Char (255)	Inlet method parameter file to use when acquiring this sample. Can be name or full path. Only required if a programmable inlet acquisition system is being used to acquire sample.
INLET_PRERUN	Char (255)	Inlet pre-run method parameter file to use prior to acquiring this sample. Can be name or full path. If empty no pre-run is performed. Only required if a programmable inlet acquisition system is being used to acquire sample.
INLET_POSTRUN	Char (255)	Inlet postrun method parameter file to use subsequent to acquiring this sample. Can be name or full path. If empty no post-run is performed. Only required if a programmable inlet acquisition system is being used to acquire sample.
INLET_SWITCH	Char (255)	Inlet pre-run method parameter file to use prior to acquiring this sample if inlet system has had to make a column switch, this will be used in preference to INLET_PRERUN. Can be name or full path. If empty no column switch pre-run is performed. Only required if a programmable inlet acquisition system is being used to acquire sample.
AUTO_FILE	Char (255)	Autosampler method parameter file to use when acquiring this sample. Can be name or full path. Only required if a programmable autosampler system is being used to acquire sample.
SAMPLE_LOCATION	Char (255)	Defines location of sample to be acquired on autosampler bed. Format will depend on type of autosampler being used.
INJ_VOL	Double	Volume of sample to inject when acquiring with programmable autosampler

Label	Format	Description
PROCESS	Char (255)	External process to run to perform processing of sample. Can be name or full path. Only required if external processes are being run, if empty no process will be run for this sample.
PROCESS_PARAMS	Char (255)	Name of external process parameter file to use when processing samples. Available to external process via MLCURSMP.TXT file.
PROCESS_OPTIONS	Char (255)	Options to specify on command line of external process when it is executed
FILE_TEXT	Char (255)	Sample text description to be used for sample. Will be recorded in data file header.
JOB	Char(255)	Job description for sample. Will be recorded in data file header.
TASK	Char(255)	Task description for sample. Will be recorded in data file header.
USER	Char(255)	User name for sample. Will be recorded in data file header.
SUBMITTER	Char(255)	Submitter for sample. Will be recorded in data file header.
CONDITIONS	Char(255)	Condition information for sample. Will be recorded in data file header.
ТҮРЕ	Char (255)	Sample type to use during Quantify. Currently can be one of ANALYTE, BLANK, QC or STANDARD
ID	Char(255)	The sample ID from OpenLynx.
CONC_A CONC_T	Char (255)	20 fields used to specify the concentration levels of compounds within this sample. Used during the quantify process.
WAVELENGTH_A WAVELENGTH_J	Double	10 fields used to specify wavelengths to analyse for this sample. Used during OpenLynx processing.
MASS_A MASS_T	Char (255)	20 fields used to specify masses to analyse for this sample. Used during the OpenLynx process. Masses can be real numbers or chemical formulae
STOCK_DIL	Double	Not currently used reserved for future use
USER_DIVISOR_1	Double	Divisor used during concentration calculation stage of Quantify. Defaults to 1 if not specified.
USER_FACTOR_1 USER_FACTOR_3	Double	Multipliers used during concentration calculation stage of Quantify. Defaults to 1 if not specified.
HPLC_FILE	Char(255)	The additional LC information for this sample (used by OpenLynx)
SPARE_1 SPARE_5	Char (255)	General purpose fields available to the User to store extra information about the sample.
ACQU_PROCESS	Char (255)	External process to run when acquiring data. Can be name or full path. Only required if external processes are being run, if empty no process will be run for this sample.

Label	Format	Description
ACQU_PROCESS_ PARAMS	Char (255)	Name of external process parameter file to use when acquiring samples. Available to external process via MLCURSMP.TXT file.
ACQU_PROCESS_ OPTIONS	Char (255)	Options to specify on command line of external process when it is executed
SAMPLE_GROUP	Char (255)	Used too inform QuanLynx that the optimisation file for an Analysis sample should combine the optimisations for a number of compounds sample groups are used. Each sample group item is a unique one or two letter code in upper case. Thus 'A:B:C', 'AA BB CC', 'AZZQP' are all valid three item groups. If the sample group field is empty then all the compounds will be optimised; one method file will be created and used for all the
		analysis samples. If a sample group in the analysis sample list does not have a corresponding entry in the compound list, then that group will not be run.
FRACTION_FILE	Char (255)	Raw data file name for this sample. Can be name or full path.
FRACTION_1 to FRACTION_4	Char (255)	References to the masses (MASS_A to MASS_T) to be monitored when performing fraction collection acquisition.
QUAN_REF	Char (255)	This field specifies which sample (if any) is to be used to adjust the retention time window of the quantification method created for the analysis. The first sample in the current group that has this field set to anything other than blank will be used.
AUTO_ADDITION	Char (255)	The Waters 2790 autosampler can take samples from up to 15 vials and inject them sequentially. This field contains a list of the sample locations separated by a semi-colon (;) e.g. A:1;A:2;A:3. The volume specified in the INJ_VOL field is drawn from each vial.
METH_DB	Char (255)	The full path to the quantify method file used for this sample group in QuanLynx.
CURVE_DB	Char (255)	The full path to the calibration curve file used for this sample group in QuanLynx.
DUMP_FILE	Char (255)	The full path to the text export file used for this sample group in QuanLynx.
PROCESS_ACTION	Char (255)	The Action that the process manager is to perform should the external application return an error

An Example Generic Sample List File

Below is an example of a small single sample generic sample list file.

[Batch]

MSMethod=DEFAULT.MDB

MSTune=DEFAULT.DBF

LCMethod=DEFAULT

ProcessParameters=C:\MASSLYNX\LC1.olp

Process=C:\MASSLYNX\OPENLYNX.EXE

UserName=john doe

BatchID=13

NumberOfPlates=1

[Plate:1]

JobCode=13

UserName=john doe

Rows=0

Columns=0

Track=R

NumberOfWells=1

[Sample:1:1]

Well=25

SampleDescription=testsample

SampleID=tst11

MSDataName=test1

SampleType=0

MSInjectionVolume=15.0000

NumberOfMasses=1

Mass1=504.00

NumberOfWaveLengths=1

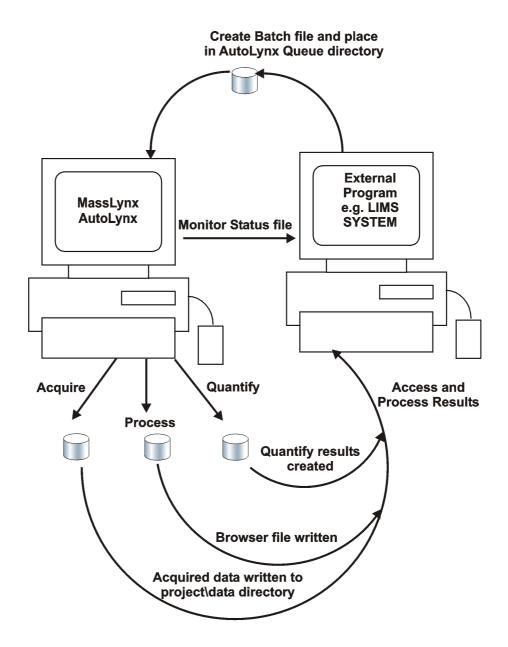
Wavelength1=254.0

NumberOfConcs=2

Conc1=50.000

Conc2=100.000

NumberOfFormulae=1


Formula1=CH3CH2Cl

AutoLynx

AutoLynx is an application that enables batches to be submitted to the MassLynx queue for automatic acquisition, processing and report generation.

Applications can be written (e.g. in Visual Basic) to:

- Take information from other software packages (e.g. LIMS systems) and automatically create batch files.
- Add these batch files to the AutoLynx queue. (AutoLynx will then add them to the MassLynx queue and perform the processing defined on the AutoLynx settings dialog).
- Monitor the progress of the batch file.
- Automatically read the acquired data, or processed results, for further processing and/or exporting into other software packages.

Where Process can be OpenLynx, ProteinLynx, MetaboLynx or a user written process

To produce the required Browser file the Process column in the Sample List must be defined as:

- OpenLynx to produce an OpenLynx Browser file.
- PeptideAuto to produce an ProteinLynx Browser file.
- MetaboLynx to produce an MetaboLynx Browser file.

For more information on AutoLynx see the MassLynx NT Users Guide.

Status.ini

The Status.ini file contains details of the current status of the Mass Spectrometer, LC system and the MassLynx Queue.

To create a Status.ini file select **Options** from the **MassLynx Tools** menu to display the options dialog.

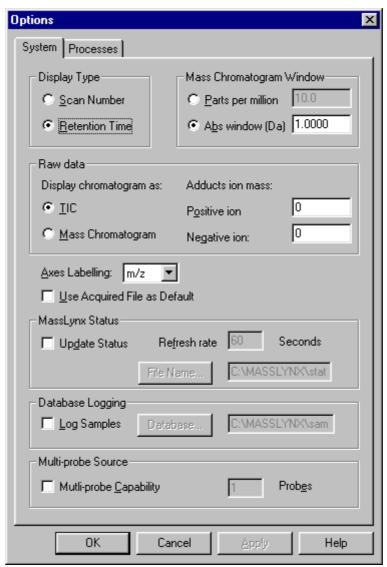


Figure 3 The Options dialog

On the **Status** page check the **Update Status** box to write details to a status file.

By default the details in this file are updated every 60 seconds, to change this enter a new time in the **Refresh rate** box.

The default filename and location is C:\MASSLYNX\status.ini. To change this press the **File Name** button, select a directory using the browser displayed, enter a new file name and press **Open**. **Note**: do not use the name of an existing *.ini file in the current directory as this will cause problems with other software.

If any of these fields are changed MassLynx must be closed down and restarted for the changes to take effect.

These files can be viewed in Notepad or by third party software across a network. This allows users to detect software or hardware errors, to decide which instrument should be used to acquire samples or when data has been acquired and is ready for further processing.

File Format

The format of the Status.ini file is as follows:

[MS Status]

Operate=2

Status=Scanning

[LC Status]

Status=0

Ready=0

%A=100.0

%B=0.0

%C=0.0

%D=0.0

Flow Rate=0.000

[Queue Status]

Queue Paused=0

Process Running=1

1=test Samples 1 to 5: Sample 1 Acquiring

Running

2=test1 Samples 1 to 5: Waiting 3=test2 Samples 1 to 2: Waiting

Total samples=12

[Time Stamp]

Time=06-002-1999,10:37:59

MS Status

The MS Status section shows mass spectrometer information.

Operate Shows the state of the mass spectrometers high voltage electronics. It has two values:

1 The mass spectrometer is in standby

2 The mass spectrometer is in operate

Status Shows the status of the mass spectrometer. It can have one of the following values:

No Instrument There is no mass spectrometer attached to the PC.

Not Scanning The mass spectrometer is idle.

Solvent Delay The mass spectrometer has started acquiring data and is

in solvent delay.

Scanning The mass spectrometer is acquiring sample data.

Waiting for Injection The mass spectrometer is waiting for the autosampler to

inject the sample.

This information is useful during automation of a list of samples. For example the inlet system will continually poll this parameter while the mass spectrometer is acquiring in order to determine when it has reached a suitable status (Waiting for injection) for the next sample to be injected and a new data file to be acquired.

LC Status

This section shows inlet system information.

Status Shows whether there is an error with the inlet system. If an error occurs then the appropriate action can be taken by the software to stop the automation. It has two values:

There is no error in the inlet system

1 Inlet system has an error

Ready Shows whether the inlet system is ready to inject a new sample. It has two values:

0 Inlet system is not ready to inject the next sample

1 The inlet system is ready to inject the next sample

%A, %B, %C and %D These parameters detail what percentage of the four possible reservoirs will be used for the mobile phase.

Flow Rate This gives the flow rate of the HPLC (ml/min).

Queue Status

This section shows sample list queue information.

Queue Paused This shows whether the process queue is paused. It has two states:

The process queue is not paused

1 The process queue is paused

Process Running This shows whether the sample list is running a process. It has two states:

0 MassLynx is not running a process

1 MassLynx is running a process

 $1, 2, \dots N$ These lines refer to the queue of batches waiting to be processed. The format of the lines is as follows, from left to right:

"Batch No." "MassLynx Batch ID" "Samples range" "Sample status" "Batch status"

Batch No. is an index of the batches in the queue.

MassLynx Batch ID is the identifier of the batch (e.g. sample list name).

Samples range indicates the range of samples in the batch.

Sample status has the form "Sample n Acquiring" to indicate which sample is running.

Batch status is "Running" if a sample from that batch is being processed, or "Waiting" if the batch is in the queue.

Total Samples

This parameter gives the total number of samples in all the batches in the queue

Time Stamp

This shows the time the data system last updated a data file. If this value does not increase as often as its refresh rate assume the data system is no longer responding.

Interfacing Guide

Notes

Notes

Index

AAutoLynx, 60

C

Copying a Chromatogram as a Text List, 13 Copying a Spectrum as a Text List, 14 Copying Data, 5 Copying Integrated Chromatogram Peaks as a Text List, 13

Ε

Export to LIMS, 10 Exporting Data, 10

F

File Formats, 56 Sample List, 56

ı

Import Data, 8 Import Worksheet, 6

M

MetaboLynx Browser Files, 34

0

OpenLynx Batch Files, 16 OpenLynx Browser Files, 23

P

ProteinLynx Browser Files, 46

S

SEQUEST Files Exporting, 15 Status.ini, 62 Interfacing Guide